2/4 B.Tech - FOURTH SEMESTER

EC4T1

Control Systems

Credits: 3

Lecture: 3 periods/week	Internal assessment: 30 marks
Tutorial: 1 period /week	Semester end examination: 70 marks

Prerequisites: Signals & Systems (EC3T3), Network Analysis and Synthesis (EC3T4)

Course Objectives:

- To give a basic idea about analysis of linear control systems.
- To emphasize the student about stability analysis of a system.
- To learn how to improve the performance of an existing system
- Enable an engineer to explore time domain and frequency domain tools to design and study linear control systems.

Learning Outcomes:

Student will be able to

- Represent a system in different models
- Recognize and analyze feedback control mechanisms
- Analyze a linear control system using various time and frequency domain tools
- Analyze the stability of a system based on transfer function.

UNIT- I

Introduction to Control Systems: Classification of control systems-examples, Feedback Characteristics, Mathematical models – electrical, translational and rotational mechanical systems **Transfer Function Representation:** Block diagram representation of systems-Block diagram algebra – Representation by Signal flow graph - Reduction using Mason's gain formula.

UNIT- II

Time Domain Analysis: Standard test signals - Time response of first order systems – Characteristic equation of feedback control systems, Transient response of second order systems - Time domain specifications – Steady state response - Steady state errors and error constants.

Compensators and Controllers: lead, lag and lead-lag compensators, Effects of proportional derivative (PD), proportional integral (PI) systems, Proportional Integral and Derivative(PID) Controllers.

UNIT- III

Stability Analysis in S-Domain: The concept of stability – Routh's stability criterion – qualitative stability and conditional stability – limitations of Routh's stability.

Root Locus Technique: The root locus concept - construction of root loci-effects of adding poles and zeros to open loop transfer function on the root loci.

UNIT- IV

Frequency Response Analysis: Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin and Gain margin-Stability Analysis from Bode Plots.

Stability Analysis in Frequency Domain: Polar Plots, Nyquist Plots Stability Analysis.

UNIT- V

State Space Analysis : State Space Analysis of Continuous Systems Concepts of state, state variables and state model, derivation of state models from block diagrams, Diagonalization-Solving the Time invariant state Equations- State Transition Matrix and it's Properties – Concepts of Controllability and Observability.

Learning Resources

Text Books:

- 1. Control Systems Engineering I. J. Nagrath and M. Gopal, New Age International (P) Limited, Pub. 2nd edition., 2005
- 2. Modern Control Engineering, Katsuhiko Ogata, Prentice Hall of India Pvt. Ltd., 3rd ed., 1998.

References:

- 1. Automatic Control Systems 8th edition-B. C. Kuo- John wiley and son's., 2003
- Modern Control Engineering, Katsuhiko Ogata, Prentice Hall of India Pvt. Ltd., 3rd ed., 1998.
- 3. Control Systems Engg., Nise– John wiley, 3rd Edition 2000